ENGINEERING TOMORROW

Data Sheet

Hot gas bypass regulator and Liquid gas mixer Type **CPCE** and **LG**

CPCE hot gas bypass regulator adapt compressor capacity to actual evaporator load.

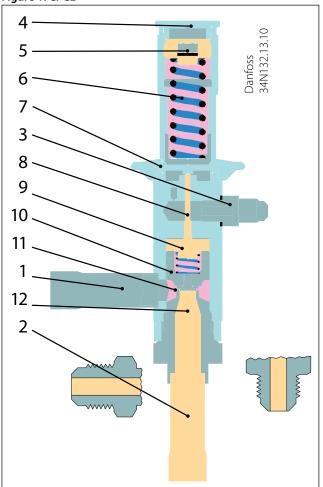
CPCE hot gas bypass regulator adapt compressor capacity to actual evaporator load.

They are designed for installation in a bypass line between the low and high pressure sides of the refrigeration system, for hot gas injection between the evaporator and thermostatic expansion valve.

Injection should be arranged to occur through an LG liquid gas mixer.

CPCE hot gas bypass regulator

- Superior control accuracy
- Direct connection to system suction line regulates hot gas injection independent of evaporator pressure drop
- The regulator increases evaporator gas velocity, thus ensuring better oil return to compressor
- Protection against too low an evaporating temperature, i.e. prevents evaporator icing
- May be used in the following EX range: Category 3 (Zone 2)


LG liquid gas mixer

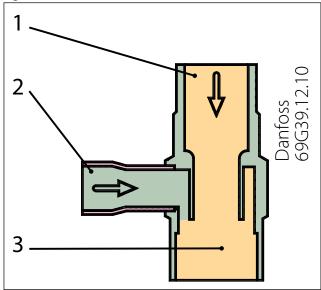
- LG provides homogeneous mixing of the liquid and hot gas refrigerant injected into the evaporator
- Prevents high suction superheat by combining hot gas injection with expansion valve characteristics
- LG can be used for hot gas defrosting or reverse cycle systems

Functions

Figure 1: CPCE

1	Inlet
2	Outlet
3	Pilot pressure connection
4	Protective cap
5	Setting screw
6	Main spring
7	Diaphragm
8	Pressure pin
9	Pilot orifice
10	Servo piston
11	Pressure equalising hole
12	Main orifice

Hot gas bypass regulator, type CPCE is servo-operated.


The diaphragm (7) is actuated on the upper side by the force developed by the spring (6) and on the lower side by the pilot pressure from (3). When the pilot pressure drops below the preset value, the throttling ball is forced away from the pilot orifice (9) by the spring which acts via the pressure pin (8).

The pressure over the servo piston (10) is then relieved. The differential pressure which is thus created moves the servo piston up and causes the regulator to open so that hot gas is able to flow to the suction side.

When the pilot pressure rises above the setting, the pilot orifice shuts off the evacuation from the space over the servo piston. Pressure then builds up again over the piston via the pressure equalising hole (11), thus closing the regulator.

- 1 Liquid inlet
- 2 Hot gas inlet
- **3** Outlet

Product specifications

Technical data

Table 1: Pressure range

Table 1.1 ressure range	
Range	Description
Refrigerants	R22, R1234ze *), R1270 *), R134a, R290 *), R404A, R407A, R407C, R407F, R448A, R449A, R450A, R452A, R507A, R513A, R600 *), R600a *) *) only LG 12-16 and LG 16-22; see more details in the note below the table
Regulating range	$p_e = 0 - 6 bar$
	Factory setting = 0.4 bar
Maximum working pressure	PS/MWP = 28 bar
Maximum test pressure	$P_e = 31 \text{ bar}$
Maximum differential pressure	$\Delta p = 18 \text{ bar}$
Maximum media temperature	140 °C
Minimum media temperature	-50 °C

This product is evaluated for R290, R600, R600a, R1234ze, R1270 by ignition source assessment in accordance with standard EN ISO80079-36. Flare connections are only approved for A1 and A2L refrigerants.

For complete list of approved refrigerants, visit www.products.danfoss.com and search for individual code numbers, where refrigerants are listed as part of technical data.

Sizing

For optimum performance, it is important to select a CPCE valve according to system conditions and application.

The following data must be used when sizing a CPCE valve:

- · Refrigerant: HCFC, HFC and HC
- Minimum suction temperature: t_c in [°C] / [bar]
- Compressor capacity at minimum suction temperature: Q, in [kW]
- Evaporator load at minimum suction temperature: Q₂ in [kW]
- Liquid temperature ahead of expansion valve: t, [°C]
- Reduction of suction temperature/suction pressure in [K]
- Connection type: flare or solder
- Connection size in [in] or [mm]

Selection

Example

When selecting the appropriate valve it may be necessary to convert the actual capacity using a correction factor. This is required when system conditions are different from table conditions.

The following examples illustrate how this is done.

- Refrigerant: R404A
- Minimum suction temperature: t_s = -30 °C
- Compressor capacity at -30 °C, Q₁= 80 kW
- Evaporator load at -30 °C, Q₂ = 60 kW
- Liquid temperature ahead of expansion valve: t_i = 40 °C
- Reduction of suction temperature/suction pressure = 5 K
- · Connection type: solder
- Connection size = $\frac{1}{2}$ in

Determine the replacement capacity. This is done by taking the compressor capacity at minimum suction temperature Q₁ minus evaporator load at minimum suction temperature Q₂. Q₁- Q₂=80-60=20 kW

Step 2

Determine the correction factor for the reduction of suction temperature / suction pressure. From the correction factor table a suction temperature reduction of 5 K (R404A) corresponds to a factor of 1.3.

Table 2: Refrigerant and Suction temperature

Suction temp. t	Sundian Assess A							
	Refrigerant	Suction temperature $\Delta t_{_{S}}$ [K]						
10	R134a	0.1	0.5	0.9	1.0	1.0	1.0	1.0
	R22, R404A, R507, R407C	0.3	0.9	1.0	1.0	1.0	1.0	1.0
0	R134a	0.1	0.3	0.7	1.0	1.0	1.0	1.0
	R22, R404A, R507, R407C	0.2	0.9	1.0	1.0	1.0	1.0	
-10	R134a	0.1	0.3	0.6	1.0	1.3	1.4	1.4
	R22, R404A, R507, R407C	0.1	0.5	1.0	1.0	1.0	1.0	1.0
-20	R134a	0.1	0.3	0.6	1.0	1.5	2.2	2.4
	R22, R404A, R507, R407C	0.1	0.3	0.7	1.0	1.0	1.0	1.0
-30	R134a	0.1	0.3	0.6	1.0	1.5	2.2	2.9
	R22, R404A, R507, R407C	0.1	0.3	0.6	1.0	1.3	1.4	1.4
-40	R22, R404A, R507, R407C	0.1	0.3	0.6	1.0	1.5	2.0	2.2

The correction table is used when suction temperature change deviates from 4 K. The replacement capacity must be divided by the correction factor determined.

Corrected replacement capacity is Q=20/1.3=15.4 kW

Step 4

Now select the appropriate capacity table for R404A and choose the column with a suction temperature of $t_c = -30$ °C. Using the corrected replacement capacity, select a valve that provides an equivalent or greater capacity. A CPCE 12 delivers a replacement capacity of 17.9 kW at a minimum suction temperature of -30 °C.

Step 5 CPCE 12, ½ in solder connection, **code no. 034N0082**.

Capacity tables

	Suction temperature	Regulator capacity Q [kW] at condensing temperature tc [°C]							
Туре	ts after pressure / temperature reduc- tion [°C]	20	30	40	50	60			
R22									
	10	7.9	16.3	21.6	26.9	33.4			
	0	12.9	17.3	21.7	27.1	33.4			
CPCE 12	-10	13.6	17.4	22	27.4	33.4			
CFCL 12	-20	13.7	17.6	22.2	27.7	33.4			
	-30	8	11	14.7	18.6	33.4			
	-40	4.3	5.7	7.6	-	33.4			
	10	11.5	24	31.7	39.4	49			
	0	18.8	25.4	32	39.9	49			
CPCE 15	-10	20	25.6	32.3	40.2	49			
CFCE 13	-20	20.1	25.8	32.6	40.7	49			
	-30	11.5	16	21.2	27.1	49			
	-40	5.9	7.8	10.6	-	49			

	Suction temperature		Regulator capacity	Q [kW] at condensing t	temperature tc [°C]	
Туре	ts after pressure / temperature reduc- tion [°C]	20	30	40	50	60
	10	15.2	31.7	42	52.3	64.9
	0	25	33.6	42.4	52.8	64.9
	-10	26.5	34	42.8	53.4	64.9
CPCE 22	-20	26.6	34.2	43.1	53.8	64.9
	-30	15.4	21.3	28.1	35.9	64.9
	-40	8	10.7	14.3	-	64.9
R134a						
	10	2.3	10.4	14.4	18	22.6
	0	7.8	11.3	14.4	18.1	22.6
CPCE 12	-10	5.8	7.9	10.8	14.4	18.1
C. C. 1.2	-20	3.4	4.6	6.1	8.3	10.6
	-30	2	2.8	3.7	4.9	6.2
	10	2.3	15.2	21.1	26.5	33.2
	0	11.4	16.6	21.2	26.6	33.2
CPCE 15	-10	8.3	11.6		21.1	26.6
CrCE 13				15.7		
	-20	4.8	6.6	8.8	11.9	15.2
	-30	2.6	3.5	4.9	6.4	8
	10	3.1	20.4	28	35.2	43.9
CDCE 22	0	15.1	22.8	28.1	35.2	43.9
CPCE 22	-10	10.9	15.2	20.9	27.7	35.2
	-20	6.4	8.8	11.8	15.7	20.3
	-30	3.7	5	6.8	8.9	11.3
R404A/R507						
CPCE 12	10	7.5	15.5	20.6	25.7	31.1
	0	12.2	16.4	20.6	25.7	31.1
	-10	12.9	16.4	20.7	25.7	31.1
	-20	13.1	16.4	20.7	-	31.1
	-30	10.3	13.8	17.9	-	31.1
	-40	5.5	7.5	9.5	-	31.1
	10	11	22.8	30.3	37.8	46.9
	0	18	24.2	30.3	37.8	46.9
CPCE 15	-10	19.1	24.2	30.4	37.8	46.9
CI CL 15	-20	19.1	24.3	30.4	-	46.9
	-30	15	20.3	26.5	-	46.9
	-40	8	10.6	13.4	-	46.9
	10	14.6	30.2	40.1	49.9	62.3
	0	23.8	32	40.1	49.9	62.3
CPCE 22	-10	25.3	32	40.1	50	62.3
CI CL ZZ	-20	25.3	32.1	40.2	-	62.3
	-30	19.9	26.7	34.8	-	62.3
	-40	10.6	14.2	18	-	62.3
R407C						
	10	9.7	18.3	23.5	28.2	33.4
	0	14.4	19	23.2	27.9	33.4
CDCE 13	-10	15.1	19	23.3	27.4	33.4
CPCE 12	-20	15.1	18.8	23.1	27.4	33.4
	-30	8.7	11.7	15	18	33.4
	-40	4.6	5.9	7.6	-	33.4
	10	14.1	26.9	34.6	41.4	49
	0	21.1	27.9	34.2	41.1	49
	-10	22.2	27.9	34.2	40.2	49
CPCE 15	-20	22.1	27.6	33.9	40.3	49
	-30	12.5	17	21.6	26.3	49
	-40	6.3	8.1	10.6	-	49
	10	0.5	0.1	10.0		17

Туре	Suction temperature	Regulator capacity Q [kW] at condensing temperature tc [°C]							
	ts after pressure / temperature reduc- tion [°C]	20	30	40	50	60			
	10	18.7	35.5	45.8	54.9	64.9			
	0	28	37	45.4	54.4	64.9			
CPCE 22	-10	29.4	37.1	45.4	53.4	64.9			
CPCE 22	-20	29.3	36.6	44.8	53.3	64.9			
	-30	16.8	22.6	28.7	34.8	64.9			
	-40	8.6	11.1	14.3	-	64.9			

The capacities are determined by reducing the suction temperature/suction pressure at $\Delta t_s = 4$ K. The given suction temperatures are minimum values, i.e. after reduction.

The capacities are made up of the CPCE hot gas capacity + the extra capacity given by the thermostatic expansion valve to maintain the superheat after of the evaporator constant

Dimensions and weights

Figure 3: CPCE

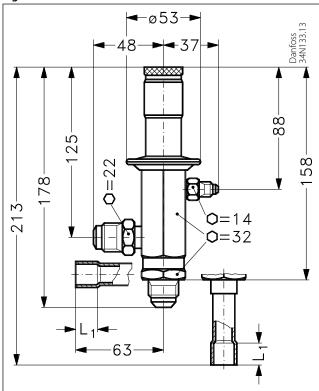
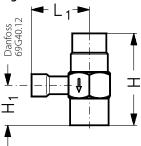



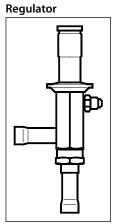
Table 3: Dimensions and weight for CPCE

Туре	L,	Net weight
CPCE 12	10	0.9
CPCE 15	12	0.9
CPCE 22	17	0.9

Figure 4: LG

Hot gas bypass regulator and Liquid gas mixer, type CPCE and LG

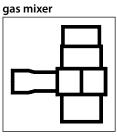
Table 4: Dimensions and weight for LG


Туре	н	H ₁	L,	NV	Net weight
LG 12 – 16	54	22	40	24	0.1
LG 12 – 22	62	26	42	28	0.2
LG 16 – 28	79	35	48	36	0.3
LG 22 – 35	89	40	66	41	0.4

Ordering

Hot gas bypass regulator

Figure 5:



		Conne	ection						
Туре	Fl	are Solder		lder	R22	R134a	R404A/R507	R407C	Code no.
	[in]	[mm]	[in]	[mm]	NZZ	K134a	N404A/N307	K40/C	
CPCE 12	1/2	12	-	-	17.4	7.9	16.4	19.0	034N0081
CPCE 12	-	-	1/2	12	17.4	7.9	16.4	19.0	034N0082
CPCE 15	-	-	5/8	16	25.6	11.6	24.2	27.9	034N0083
CPCE 22		_	7/8	22	34.0	15.2	32.0	37.1	034N0084

 $^{^{\}mbox{\scriptsize (1)}}$ The rated capacity is the regulator capacity at:

- evaporating temperature $t_e = -10 \, ^{\circ}\text{C}$,
- condensing temperature $t_c = 30 \,^{\circ}\text{C}$,
- reduction of suction temperature / suction pressure $\Delta t_{\epsilon} = 4 \text{ K}$.

Figure 6: Liquid

	Connection							
Туре	Outlet ODM		Inlet hot gas ODF		Inlet liquid ODF		Code no.	
	[in]	[mm]	[in]	[mm]	[in]	[mm]		
LG 12 – 16	5/8	16	1/2	12	5/8	16	069G4001	
LG 12 – 22	7/8	22	1/2	12	7/8	22	069G4002	
LG 16 – 28	1 1/8	28	5/8	16	1 1/8	28	069G4003	
LG 22 – 35	1 3/8	35	7/8	22	1 3/8	35	069G4004	

Certficates, declaration and approvals

The list contains all certificates, declarations, and approvals for this product type. Individual code number may have some or all of these approvals, and certain local approvals may not appear on the list.

Some approvals may change over time. You can check the most current status at danfoss.com or contact your local Danfoss representative if you have any questions.

Table 5: Certificates, declaration and approvals

Document name	Document type	Document topic	Approval authority
RU Д-DK.БЛ08.В.00191_18	EAC Declaration	Machinery & Equipment	EAC
MD 034N0625.AA	Manufacturers Declaration	PED	Danfoss

Online support

Danfoss offers a wide range of support along with our products, including digital product information, software, mobile apps, and expert guidance. See the possibilities below.

The Danfoss Product Store

The Danfoss Product Store is your one-stop shop for everything product related—no matter where you are in the world or what area of the cooling industry you work in. Get guick access to essential information like product specs, code numbers, technical documentation, certifications, accessories,

Start browsing at store.danfoss.com.

Find technical documentation

Find the technical documentation you need to get your project up and running. Get direct access to our official collection of data sheets, certificates and declarations, manuals and guides, 3D models and drawings, case stories, brochures, and much more.

Start searching now at www.danfoss.com/en/service-and-support/documentation.

Danfoss Learning

Danfoss Learning is a free online learning platform. It features courses and materials specifically designed to help engineers, installers, service technicians, and wholesalers better understand the products, applications, industry topics, and trends that will help you do your job better.

Create your Danfoss Learning account for free at www.danfoss.com/en/service-and-support/learning.

Get local information and support

Local Danfoss websites are the main sources for help and information about our company and products. Find product availability, get the latest regional news, or connect with a nearby expert—all in your own language.

Find your local Danfoss website here: www.danfoss.com/en/choose-region.

Coolselector®2 - find the best components for you HVAC/R system

Coolselector®2 makes it easy for engineers, consultants, and designers to find and order the best components for refrigeration and air conditioning systems. Run calculations based on your operating conditions and then choose the best setup for your system design.

Download Coolselector®2 for free at coolselector.danfoss.com.

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.